
Optimization Theory and Algorithm 10/20//2021

Lecture 10

Lecturer: Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Junbo Hao

1 Part 6: Advance Topics

1.1 Stochastic Gradient Descent

1.1.1 Motivation of SGD

Suppose that we have a dataset {ai, bi}N
i=1, ai ∈ A ⊆ Rn, bi ∈ B ⊆ R. A supervised learning process is to

find a function to present the relationship between A and B, that is h : A → B.

• If B = {−1, 1}, then it is called “binary classification problem”.

• If B = R, then it is called “regression problem”.

To estimate h, generally adopting the so-called expected risk minimization method:

min
h∈F

Eρ[`(b, h(a))], (1)

where F is a function space (also called Hypothesis Space), ` is a loss function and (a, b) is generated from

an unknown distribution ρ.

Example 1.1. For a classification problem, a natural loss funtion is 0− 1 loss,

`01(b, h(a)) =

 0, b = h(a),

1, b 6= h(a).
(2)

Then, we can derive that

min
h∈F

E[`01(b, h(a))] = min
h∈F
{1 ·P(b 6= h(a) + 0 ·P(b = h(a))}

= min
h∈F
{P(b 6= h(a)}

= min
h∈F

E[1(h(a) 6= b)].

1

Let us consider a more general case, define g : A → R, then we use

h(a) = sign(g(a)) =


1, g(a) > 0,

0, g(a) = 0,

−1, g(a) < 0.

(3)

Thus,

`01(b, h(a)) =

 0, b = h(a),

1, b 6= h(a),
= `01(b, g(a)) =

 0, bg(a) > 0,

1, bg(a) 6 0.
(4)

The quantity bg(a) is called “margin” in the supervised learning.

Because that the distribution ρ is unknown, the expected risk minimization (1) cannot be directly computed.

The following empirical risk minimization (ERM for short) approach is used to replace the expected risk

minimization as

min
h∈F

1
N

N

∑
i=1

`(bi, h(ai)). (5)

Obviously, the loss function (2) is discontinuous and non-convex. So, we cannot directly use the convex

optimization trick to handle the problem (5) with the 0-1 loss. The so-called convex surrogate function is

adopted to overcome this hurdle (see Figure 1).

Consider the margin u = bg(a), then general loss on the margin has the property: `(u)→ 0 as u→ +∞ and

`(u) increasing as u→ −∞. Thus, we list the commonly used surrogate function as follows:

• Logistic loss: `(u) = log(1 + exp(−u)) for the logistic regression.

• Hinge loss: `(u) = (1− u)+ = max(1− u, 0) for the SVM.

• Exponential loss: `(u) = exp(−u) for the AdaBoost.

• Square loss: `(u) = (1− u)2/2 for the least squares SVM.

Example 1.2. (Logistic Regression Again) Consider P(b = 1|a) = p and P(b = −1|a) = 1− p, then suppose

that

P(b = 1|a) = exp(a>x)
1 + exp(a>x)

,

and

P(b = 1|a) = 1
1 + exp(a>x)

.

Thus,

P(b|a) = 1
1 + exp(−ba>x)

. (6)

2

Figure 1: Classical convex surrogates for binary classification with the 0-1 loss.

Log-likelihood is

∑
i
`(bi, ai) = −∑

i
log(1 + exp(−bia>i x)).

MLE is equivalent to

min
x

1
m ∑

i
log(1 + exp(−bia>i x))︸ ︷︷ ︸

logistic loss

.

Example 1.3. (Regression) Let us consider the following regression cases

• Suppose that F = {h|h(a) = a>x} and `(b, h(a)) = (b− h(a))2, then ERM is evquivalent to

min
x

1
2m ∑

i
(bi − h(ai))

2 =
1

2m
‖Ax− b‖2.

• Ridge Regression:

min
x

1
m ∑

i
(bi − h(ai))

2 + λ‖x‖2 =
1
m ∑

i
{(bi − h(ai))

2 + λ‖x‖2}.

• Nonlinear case:
1
m ∑

i
(bi − hx(ai))

2,

where hx is a nonlinear function, e.g., deep nets.

Definition 1.4. Let {(ai, bi)}m
i=1 be a dataset, F = {hx|hx : A → B, x ∈ Rn} be a class of predictor function

and ` be a loss function. Then we define the corresponding finite-sum optimization problem as

min
x

f (x) =
1
m

m

∑
i

fi(x), (7)

where fi(x) := `(bi, hx(ai)).

3

One key property of the formulation (7) is that every term in the finite sum optimization only involves one

sample from the dataset.

If we use the gradient descent algorithm to solve it:

xt+1 = xt − st

m ∑
i
∇ fi(xt) = xt − st

m ∑
i
∇x`(bi, hxt(ai)).

From this update, we see that one iteration of gradient descent requires to go over the entire dataset in order

to compute the gradient vector. In a big data setting where the number of samples m is very huge, this cost

can be prohibitive.

1.1.2 SGD

Algorithm 1 Stochastic Gradient Descent

1: Input: Given an initial starting point x0 ∈ Rn, and t = 0

2: for t = 0, 1, . . . , T − 1 do

3: Compute a stepsize or learning rate st > 0.

4: Draw a random index it ∈ {1, . . . , m}.

5: xt+1 = xt − st∇ fit (x
t) and t := t + 1.

6: end for

7: Output: xT .

The core idea of SGD is assuming each component function fi is differential, the method picks an index i

randomly and takes a step in the direction of the negative gradient of the component function fi.

The key motivation for this process is the using a signal data point at a time results in updates that are m

times cheaper than a full gradient step. Note that using a signal component does not necessarily lead to

convergence, even cannot guarantee the decreasing of objective function.

Example 1.5.

min
x

f1(x) + f2(x),

where f1(x) = 2x2 and f2(x) = −x2. If xt > 0, and it = 2, then the SGD update will necessarily lead to an

increase in the objective function value.

Batch SGD:

xt+1 = xt − st

|Dt| ∑
it∈Dt

∇ fit(x
t),

where Dt is a subset of {1, 2, . . . , m} called “Batch”. If |Dt| = m, it is GD. If |Dt| = 1, it is SGD. If |Dt| << m,

it is the mini-batch stochastic gradient descent algorithm.

4

1.1.3 Convergence

Assumption 1.6. (A1) Objective function f is β-smooth,

‖∇ f (x)−∇ f (y)‖ 6 β‖x− y‖.

Assumption 1.7. (A2)

(1) The index it does not depended from the previous i0, i1, . . . , it−1.

(2) Eit [∇ fit(x
t)] = ∇ f (xt) (Unbiased Estimation).

(3) Eit [‖∇ fit(x
t)‖2] = σ2 + ‖∇ f (xt)‖2 (control the variance).

Assumption 1.8. (A3) The objective function f is α-strong convex

f (y) > f (x) + 〈∇ f (x), y− x〉+ α

2
‖x− y‖2.

Lemma 1.9. Under A1, consider the SGD, then

Eit [f (xt+1)] := E[f (xt+1)|xt]

6 f (xt)− st
〈
∇ f (xt), Eit [∇ fit(x

t)]
〉
+

βs2
t

2
Eit [‖∇ fit(x

t)‖2].

Proof. We know that

f (xt+1) 6 f (xt) +
〈
∇ f (xt), xt+1 − xt]

〉
+

β

2
‖xt+1 − xt‖2

= f (xt)− st
〈
∇ f (xt),∇ fit(x

t)
〉
+

βs2
t

2
‖∇ fit(x

t)‖2.

Taking the expectation of the above inequality leads to the results. �

Lemma 1.10. Based on A1 and A2, it has

Eit [f (xt+1)− f (xt)] 6
βs2

t
2

σ2 − st(1−
βst

2
)‖∇ f (xt)‖2.

Proof. According Lemma 1.9, A1 and A2,

Eit [f (xt+1)− f (xt)] 6
βs2

t
2

Eit [‖∇ fit(x
t)‖2]− st

〈
∇ f (xt), Eit [∇ fit(x

t)]
〉

=
βs2

t
2

(σ2 + ‖∇ f (xt)‖2)− st‖∇ f (xt)‖2

=
βs2

t
2

σ2 − st(1−
βst

2
)‖∇ f (xt)‖2.

�

5

Lemma 1.11. Suppose A3 holds, then

f (x)− f ∗ 6
1

2α
‖∇ f (x)‖2.

Non-convex and β-smooth objective functions:

SGD is a commonly accepted method for training neural networks, which are usually non-convex and

smooth optimization problems. For GD, we have known that

min
06t6T−1

‖∇ f (xt)‖ 6 O(
1√
T
).

What about SGD?

Theorem 1.12. (Fixed Learning Rate)

Suppose that A1 and A2 hold. Let st = s ∈ (0, 1/β], then

E[1/T
T−1

∑
t=0
‖∇ f (xt)‖2] 6 sβσ2 +

2(f (x0)− f ∗)
Ts

.

Proof. Based on Lemma 1.10,

Eit [f (xt+1)− f (xt)] 6
βs2

t
2

σ2 − st(1−
βst

2
)‖∇ f (xt)‖2,

6
βs2

2
σ2 − s

2
‖∇ f (xt)‖2.

Take the expectation over all indices, then

E[f (xt+1)− f (xt)] 6
βs2

2
σ2 − s

2
‖E[∇ f (xt)‖2].

Thus,

f ∗ − f (x0) 6 E[f (xT)− f (x0)] 6 − s
2

T−1

∑
t=0

E[‖∇ f (xt)‖2] +
Ts2β

2
σ2.

Then,

E[1/T
T−1

∑
t=0
‖∇ f (xt)‖2] 6 sβσ2 +

2(f (x0)− f ∗)
Ts

.

In addition, it has

E[min
06t6T−1

‖∇ f (xt)‖2] 6 sβσ2 +
2(f (x0)− f ∗)

sT
.

�

Remark 1.13. Consider for SGD,

E[min
06t6T−1

‖∇ f (xt)‖] = O(σ +

√
1
T
). (8)

For GD, we has

min
06t6T−1

‖∇ f (xt)‖ = O(

√
1
T
). (9)

6

	Part 6: Advance Topics
	Stochastic Gradient Descent
	Motivation of SGD
	SGD
	Convergence

